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ABSTRACT

The blast wave solutions for the axisymmetric flow fields
4 n

associated with a family of power-law shocks, ya-•,
h• modified to properly account for the entropy

layer near the surface of the body. The method of inner

and outer expansions was used. It was shown that this

method is of limited usefulness for n only slightly greater

than l/z due to the slow convergence of the inner expan-

sions, but for +(+ Z)/(3M + 2)5 n c I the expansions con-

verge rapidly enough for the method to be useful. The

case n = I/Z is singular and causes no difficulty.

In the range (.y + 1)/(2 (+ 1) n - 1 the body shape given

by blast wave theory is correct, but the blast wave flow

field profiles must be modified near the body. For

n -c 0 + I)/(2 + l)both the body contour and the floA field

profiles must be modified.
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SYMBOLS

A Arbitrary constant used to define shock shape

D Expansion term for density in outer region

F Pressure function from blast wave theory

G Parameter defined by Equation (2. 8)

g General symbol for dependent variables

I Function defined by Equation (3. 57)

k Constant in defining Von Mises variable

k = (4n2)n/l

L Characteristic dimension of flow field, Equation (2. 13)

1 Length of body

M Mach number

n Exponent in equation of shock

P Expansion term for pressure ii, outer region

p Pressure

u Axial velocity

U Expansion term for axial velocity in outer region

v Transverse velocity

V Expansion term for transverse velocity in outer region

x Axial coordinate

y Transverse coordinate

y* Proportional distance across shock layer, Equation (4. 10)

Y Expansion term for space variable in outer region

z Similarity variable, z = y/ys
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GREEK SYMBOLS

IL
a Parameter defined by Equation (4. 4)

P Density function from blast wave theory

'y Ratio of specific heats

0 Angle at which streamline crosses shock wave

p Density

r Body thickness ratio

0 Transverse velocity function from blast wave theory

'If Strea;rnfunction

tý Von Mises variable, =k%

W Independent variable in outer region, (a = -/x2n

SUBSCRIPTS

b Value at body surface

s Value at shock

00 Free-stream conditions

1,2,... First and second order terms in expansion

SUPERSCRIPTS

Dimensional quantity

v
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1. INTRODUCTION

I"
The inviscid hypersonic flow of a perfect gas about slender blunt

nose bodies has been the subject of numerous investigations. Blast wave
theory has proven to be a useful method for analyzing this problem. This

approach uses the fact that, subject to the hypersonic, small disturbance

conditions, the flow field about a blunt nose slender body is similar to the

unsteady flow field of an intense blast wave propagating into a medium at

rest. Lees and Kubota (Reference 1) and Kubota (Reference 2) have used

the blast wave analogy to analyze the inverse problem of a family of power-
nlaw shocks, ys' xn . Solutions were obtained for 1/2 !5n - 1. A para-

boloidal shock, n = 1/2, was found to give a zero thickness afterbody

with all of the drag concentrated at the blunt nose. These solutions, how-

ever, do not properly account for the layer of high entropy air surrounding

the body. This entropy layer consists of streamlines that pass through the

blunt portion of the shock. Singularities such a. infinite temperature and

zero density at the body surface were obtained.

Sychev (Reference 3) introduced the idea of obtaining a corrected

body shape which accounts for the presence of the entropy layer and pro-

duces the outer flow field and shock wave given by blast wave theory. He

obtained a numerical solution for the body that produces a paraboloidal

shock and showed that a critical value of Ai exists above which the body

shape is not affected by the entropy layer.

Yakura (Reference 4) has applied the method of inner and outer ex-

pansions as developed by Lagerstrom, Kaplun, and Cole (References 5

and 6) for treating singular perturbation problems to the inverse problem

with specified shock shapes. He obtained solutions for blunted wedges,

blunted cones, and a paraboloidal shock. The paraboloidal shock gives a

body which grows as xl/ Z' in the downstream direction instead of the

zero thickness afterbody predicted by blast wave theory.

The present analysis uses the methods developed by Yakura to add

an entropy layer to the blast wave solutions obtained by Kubota for a family

of power-law shocks. Only the axisymmetric case is considered, but the

methods are applicable to plane flow.
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2. METHOD OF ANALYSIS

2. 1 Equation.s and Boundary Conditions

In considering the inverse problem with the shock wave specified

it is convenient to use the Von Mises transformation. The indeperdent

variables are x, a downstream coordinate, and 4i, a variable that is pro-

portional to the streamfunction. These variables make it easy to identify

the body as the tP = 0 streamline, and the conservation of entropy along

streamlines helps to define the entropy layer.

Following the analysis of Yakura, Reference 4, the strearnfunction

for axisymmetric flow is defined by:

8yPUY, ax P1)

Introducing the Von Mises variables x and %P = kP, 'where k is an

arbitrary constant that can be chosen for convenience, the hypersonic

equations of motion for a perfect gas may be written as:

W_ v (2.2)
8x u

y alp Pu(2.3)8y -- P-u(.3

8ev -o 0  (2.4)
W8x k 84,

u2 +V 2 + = 1-x (2.5)

-P- ZG sin2 e (2.6)
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The coordinate system is shown in Figure 1. In Equations (2. 1)

through (2. 6) the variables are nondimensionalized as follows:

Pu' v'
Pco uOD

(2.7)

p _x,y-Y

SHOCK

BODY

XU-

Figure 1. Coordinate System

The parameter G is a function of y,

G = 11(2.8)

9 is the angle at which a streamline crosses the shock, and L is a charac-

teristic dimension of the flow field. The energy equation, Equation (2. 5),

has been written in integrated form. The axial momentum equation,

8u 1 p.o .)
u!- + 1-2- V 2E = 0 (2.9)ex p ex k 84=

has been replaced by Equation (Z.6) which states the condition of constant

entropy along streamlines. The usual hypersonic approximation

(MOD 0-1l (Z. 10)

C is made throughout this report such that the solution is independent of

free-stream Mach number.
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The boundary conditions at the shock may be written as:

2 2
Ps = - sin 2

PS =

Us=(Y-+4) sin e +coo 2 e (2.11)

2
v M sin e cor 0

ys = ys(x)

where the shock shape, y.(x), is a specified function for the inverse problem.

We consider the family of power-law shocks

Ys = Ax'n (2. 12)

where A is an arbitrary constant. The remainder of this analysis there-

fore reduces to that of Yakura (Reference 4) for the spacial came n = 1/2.
A characteristic dimension is defined by

-= (7 ) (2. 13)

such that the equation for the family of shocks is

e = ._ n (2.14)

For n = 1/2, L is the nose radius of the shock, but the nose radius is zero

for I/2 .c n -= 1. However, the physical significance of L for I/Z 5- n - I
can be seen by noting that, for y. = I

dy5Ca- -- 0(0) and x ..0(0) (2.15)
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Thus L is a measure of the radius of the strong blunt portion of the shock

in.the nose region. The "V term is included only for convenience in

matching Yakura's result for n = 1/2 (Reference 4).

Continuity considerations require that:

2
y x(2n2.16)

Using this relation and taking

k = (4n 2  (2. 17)

for convenience, the condition of constant entropy along streamlines,

Equation (2. 6), can be expressed as:

2G (.6
P + 2Y' ( 2. 18)

Equation (2. 18) illustrates the convenience of using the Von Mises trans -

formation for the inverse problem since the entropy function is known in

terms of the dependent variable 4. The boundary conditions, Equations

(2. 11), can be expressed as:

2 1

re -Y+ + 2ý-)I

y - I

24, 1 -n)/rn

u + (2.19)
8 Y + T1 + *-n I+qOIn)n

-zjn) In)
s Y77 1 + -1n))n

ye = (2k4 5 ) 1/2
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The problem is now specified by Equations (2.2), (2.3), (2.4), (2.5),

(2. 18) and the above boundary conditions for p, p. u, v, y as functions

of x and tj.

2. 2 Method of Inner and Outer Expansions

The method of inner and outer expansions was developed by

Lagerstrom et. al., (References 5 and 6) for treating singular perturba-

tion problems with particular emphasis on viscous flow at high and low

Reynolds number. Van Dyke (Reference 7) used the method to identify

certain second order boundary layer effects such as curvature, vorticity

interaction, etc. Yakura (Reference 4) has used the method to analyze

the inviscid hypersonic flow about slender blunt nose bodies accounting

for the entropy layer near the body. Essentially, the method divides the

flow field into two regions in which different asymptotic expansions are

valid and uses a limiting process to match the expansions in an overlap

region.

The method as applicable to the inviscid, blunt nose, slender body

problem is described below in a way that permits an understanding of the

present analysis. A more general and detailed description may be found

in the above references.

The outer region of thq flow field is defined as consisting of those

streamlines which cross the weak portion of the shock where x m-1. In

this region s 0ý •O(8) - 0(x 2n). An independent variable of order one is

defined for the outer region by

S= -0(1) (2.20)2n
x

and an outer expansion for the dependent variables is assumed of the

form

Oex g(x,) = Ei(x)Fi(w) (2.21)
i~ 1

The functions E1 (x) can be chosen to match the known shock conditions

expanded for large x, and the boundary conditions on Fi( ) are taken at

the shock. This expansion scheme leads to an outer solution that is

asymptotically valid for large distances downstream from the nose.

-6-



Streamlines near the body crons the strong portion of the shock

near the blunt nose and define an inner region where 4 -~0(0). The ex-

pansion assumed above where Ei(x) is taken from the shock conditions

for large x is not valid. An expansion of the following form is assumed

for the inner region:

Iex g(x,4)) = • ei(x)fi(4) (2. 2)
i=l

Since the body shape is unknown a priori, the form of e1 (x) and the

boundary conditions on fi(4) must be taken from the asymptotic behavior

of the outer solution as the inner region is approached. Two limit proc-

eases are defined:

The Inner Limit of the Outer Expansion

Ilim Oex g(x, t) = lim coex g (x, 44) (2.23)
x--0, i fixed

The Outer Limit of the Inner Expansion

O0im Iex g(x, 4) = lim [lex g (x, 4)] (2. 24)
x--o,o lw fixed

If the outer solution is known, the e1 (x) terms may be determined by takinj

the inner limit of the outer expansion. The assumed inner expansion,

Equation (2. 22), may then be used, and the boundary conditions on fi( )

are taken such that:

OHm lex g(x, ) = Ihim Oex g(x, 44 (2. 25)

The outer and inner solutions can be combined in such a way as to

provide a composite expansion that is uniformly valid across the entire

shock layer. Essentially it is desired to eliminate the incorrect portions

of both the outer and inner expansions. This can be done in the following

manner:

g(x,4i) a Oex g(x, *) + lex g(x,4i) - Olim lex g(x, 0) (2.26)

C Note that, due to the boundary condition imposed upon the inner solution,

the outer and inner limits of the composite expansion reduce to the outer

and inner expansions respectively.
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3. SOLUTIONS FOR POWER-LAW SHOCKS

3. 1 Outer Solution

Introducting the variable w = s/xZn into Equations (2. 2) through

(2. 5), (2. 18), and (2. 19) and expanding for large x, the equations and

boundary conditions for the outer region can be expressed as follows:

By - Zn F BY = (3.1)
WX_ x 8w ui

+ k (3.2)

8x 'y' a " -- + P2n 0 (3.3)

u2 +v 2 + =I (3.4)Y P

Z G Ir-- [" ' xn -rr +"] (3.5)

with boundary conditions at the shock, w = l/k.

Ps = .... ÷n"'"

(y + 1)2,, xn)" (-

(3.6)
I l I 1l

us Y: 1 (-x n (1 -n) in +• Y-+ 2) (l -n) In +"'

s ~ wZn)( ,X)( n)n

Y + 1

ye =2kw18)11/2 x n

"-8-"



The shock conditions suggest the following form for the outer

expansions:

p = PI (w)x' Zll'n) + P 2 Mlx( 4 (ll-n) +

p = D1 (W) + D2 (W)x'(ln)

(3.7)
u I + U I(W) X- 2 0'n) + U Z(w)x"4(1'n) +..

-2(1-n) X-3(1-n)
v= V1 (w)x-1 1 n+ V2 ~x 3( 1•) )+..

y Y(W) xn + y 2( )x-(Z- 3n) +

Substituting these expansions into the outer equations, Equations (3. 1)

through (3. 5), the following set of first order outer equations and boundary

conditions are obtained:

- dY I V1

Y " = v 1 (3.8)

dY 1  --

"yi • I k (3.9)

Zn dV I dP 1V I + •o Y I " 0( 3 . 1 0 )

I(I - n) 2k U-YIw 0

P 1  G

1 = W0-TF 
(3.11)

22 P12U +V1 +, 0~.= (3. 12)DI I -
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(with boundary conditions at the shock, w z= Ilk:

p 4n2

1 +

D1 1=±'f

4n2 (3.13)

= +

Note that the first four of the above equations do not contain the axial

velocity, UV, and can therefore be solved independently of the energy

equation, Equation (3. 12). This corresponds to the blast wave approxi-

mation of u ow u0e. The axial velocity can be obtained from Zquatin. (3. 11)

after the first four equations are solved. The solution of Equations (3. 8)

through (3. 11) can be taken directly from Kubota's blast wave analysis

(Reference 2) in terms of the similarity variable a a y/y 5o

PI = 2n 2 F(Z) (3.14)

VI= () (3. 15)

V1 = "ffn(a) 3. 16)

Yl I TZ (3.17)

The functions F(s), p(s), #(z) are given in numerical form in Reference A

fory = 1.4 and n 1/2, 4/7, 2/3, 3/4, and 1. An approdimate analytic

solution for these functions is given by Mirels (Reference 8).

C
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Finally, the first order outer solution or the blast wave solution

is given by:

p Zn2 F(M) x-2(1-n) (3.18)

p = P(z) (3.19)

v - "(nO(z) x"(l'n) (3.20)

u = 1 - nF[(YZ). .. + 02(s)] x'Z(l -n) (3.21)

y= a xn (3.22)

The above results are not valid near the blunt nose or very far downstreanm

where the hypersonic, small disturbance conditions are not satisfied.

They are also invalid near the body and give zero density and infinite

temperature on the surface of the body. Also, for n = 1/2, the body is

of zero thickness. These last two difficulties can be eliminated by using

a different expansion near the body in the inner region or entropy layer.

3.2 Inner Solution

The outer expansion assumes 1, and it can be seen from

Equation (2. 18) that this leads to a singularity at the body surface. Dif-

ferent expansions must be used for the inner region where * '-0(l). The

expansion of Equation (2. 22) is valid if the el(x) terms are determined

by taking the inner limft of the outer expansion according to Equation (2. 23).

Using this expansion, a solution of Equations (2. 2) through (2. 5) and (Z. 18)

can be obtained in terms of the variables x and 4j.
1

To obtain the Ilim Oex g(x, 4,) it is necessary to know the outer solu-

tion in analytic form near ,the body. This can be obtained by expanding

the outer solution for the pressure in a Taylor series about the body,

w =0, and using the resulting pressure distribution to solve the remaining

outer equations. Thus:

p. 1 [P(0) +(dL)o W +. ]x-11-n)+P2 (W)X40 -n) + (3.23)

-11



Since 4j -,0(l) in the inner region, w - 0(1/x2n ) and Equation (3.23)

becomes:

p WPIO)x"-20-n) + (dP-I)oX-2+ + P 2( W)X-
4 (l-n) + ''" (3.24)

where (dP/ du) 0 is finite and of order one. From Equation (3.24) it is

seen that to the accuracy involved in the first order solution the pressure

may be taken as constant across the inner region and equal to the value

given by the outer solution at the body surface. Substituting

PI(W) = P1 (0) (3.25)

into the first order outer equations gives the following results valid near

the body:

D-IM =(l-n)lny (3.26)

Y1 w I G (GWY n-~'~ + Y 1(0)] 3.7
+ I - •3.27)

V (w) =n - 2w (3.28)

U = + (3.29)

Using the above relations, the inner limit process, Equation (2. 23),

can be applied to the outer solution. The result in terms of the inner

variables can be written as:

Hlim Oex p(x, t,) = P 1 (0) x"2(l-n) (3.30)

-12-



( Ilim Oex p(x, (j)=( ) ) ,,(l'n)/ny.2(l -n)/y (3.31)

2(+n /2

Uim Oex y(x, F)= { ]lk,- n x Y + Yl(O)2xZn

(3.32)

Similar expressions can be obtained for v and u.

An important feature of the application of the method of inner and

outer expansions to this problem can be seen from Equation (3.32).

For n = l/Z, Y1 (0) - 0 (i. e., the body given by the outer solution has zero
thickness), and the Him Oex y(x, ti) reduces to:

urim Oex y(x, 4) = _ 6] 4  x (3.33)

Equation (3. 33) gives the following form for the inner expansion which

is the same as that used by Yakura (Reference 2):

Iex y(x, qj) = Y( x) I/ZY (3.34)

For n =--I/2, however, YI(M) 0 0, and Equation (3.32) must be expanded

resulting in:

Him Oex y(x,') = Y1 (0) xn

§T kyYi GPOj/YF(Yl Y n ~n

+ o 4 ... + -( 3n) + ... (3.35)

where the term Y2 (M)x"(2-3n) represents the contribution of the second

order outer solution. Equation (3. 35) gives the following form for the

inner expansion:

-13-



-3n'4L1f-n
Iex y(x, i) = y1 (+) xn + y2 (O)x + + y 3 (4)x

+ +.. + o 2x -3n)I+ (3.36)

To obtain an inner solution that is consistent with'the first order outer

solution, enough terms must be retained in Equation (3.36) that the order

of the dropped terms is less than or equal to x . It can be seen

that, as n-+ 1/2, an increasing number of terms must be retained in the

first order inner expansion. Also, for n = 1/2, Y1 (0) = 0 and Equation

(3. 35) is not valid. Thus Equation (3. 36) can be used for all n so 1/2 if

enough terms are retained in the expansion.

The following forms of the inner expansions are consistent with the

first order outer solution In the range of values of n indicated.. The

n = 1/2 case was solved previously by Yakura (Reference 2) and is in-

cluded here only for the sake of completeness.

I n a I p(x,. ) = p1 (4) x"(2 -n)

-2(1 -n)

P (x, 0) = P 1(10) x Y(3.37)

u(x,%W = 1 +U 1 (44x

--* n . 1 y(x, 1 yl(4l) xn

(3.38)

v(x,4i) = V1(4•) x-( -n)

3y+L n -c n +1 ylx,,p) = y1(4) xn + Y,210) x-ny

(3.39)

v(x,•) = Vl(4) x"(--n) + v2(-) x

-14-



(. ~n = Y(x,. --y() x/(v
n:(3.40)

v(x, v) Vi( 4)) x"

For 1/2 -c n -: (y + 2)/(3y + 2) additional terms would be required in the

expansions for y and v. Only the above intervals are considered in the

remainder of this report.

Substituting the above expansions into the complete hypersonic

equations, Equations (2. 2) through (2. 5) and (2. 18), results in the follow-

ing system of first order inner equations:

-p: n I - - 0 (3.41)

dy1dy 0 (3.42)

v- nIyI = 0 (3.43)

S ZG (3.44)
p• Y + 24.(lI'- ) In

= -~p 1  (3.45)
1 Pl

I 1

+ -- n + I-- Two additional equations are required:

dyZ k (3.46)

-2 -[ n) n y 0 (3.47)

-15-



n Equations (3.41), (3.44), and (3.45), plus the following two

equations are required:

dy1  1
dp= 1  (3.48)dý ply,

"Yl 2yvl (3.49)

The boundary conditions are such that:

Hlim Oex g(x, 4) = Oirm lex g(x,i) (3.50)

The above system of equations are easily solved and the first order

inner solution can be written as:

I - n I p(x.,4) P (O) (3.51)

2 1(u(,rPl( 1 0) + ()| ( - (n)p/n)I/Y x- 2l -n'J(,Y

"<' --1 1L•-i- J l l+ (353)'
• r I 7/Y• -Z(l -nlX•

u~,,=lY-"1 P1(0)LI-j (,. ,,-n,,n)' Y ,.,

+2-i+1 n , 1 y(x,4) Y (O) xn (..54)

v(x,4i) = nY1 (0) x -n) (3.55)

+ 2 Y 1 -n+2(l1-n)
n ycx,ip) = Y1(O) n + y2(l) x (3.56)

v(x,.o) = nY 1 (o) x-(-n) + [10o n) - n Y.4) x (3,57)

-16-



where

y ~ o ~ ~ j l Y I ~ p ~ n ~ ) +~ F ] l / Y L ( Y + l ; )L
Yl(O)(y+1 + n _.) (3.58)

I(,+;n, Y) 0L 0 ~ /n"~- 2 (~~Y dii (3.59)(1+

/ 11
_- ! __L_,1/2l •2y ,

y(x,,) 2 j (•l iO + I), x (3.60)
21( + 1)P IO

I

= 2O + 7)1I/2 y + I)Pl(O)] (24 + I7)ý x ( 3.61)

3. 3 Composite Expansions

Equation (2. 26) can now be applied to the inner and outer solutions

resulting in a solution that is uniformly valid from the shock to the body.

Thus the final results are:

n I = Zn 2 F(Z) x"Z(l'n) (3.62)

+[ JO / 1- Y I -n = -2 1 3.6n)1 __

p = +[2G 1 + 24, n - (2 4 IT )xY (3.63)

O )[_ 2G 1 ______
u-- nZ[3ylF~z,) + 02(z)] x'Zll'n,

+ 7-ý-7 PI(0f x

(3.64)

(1

-17-



i+-A • n y V'zxn (3.65)

v = 2 no(z) x" (0-n) (3.66)

k+ rýI + zG -n4/ 120-n)
- n = + I(tP;n,y)x

T-2 (3.67)

0, -(1-n)+ F(l- n) k ZG (• +n - -)
v - -no( ) x n V njvy'/Y IOP; (3.68)

(3.69)-- = -\"Z1/2 x 2 [(Zy ) -, (m ,

(,), + [ + 1)P(o)] + 1)' Z" '(2

(3.70)

In the above equations the relation between the similarity variable z and

the Von Mimes variable 4, is given by:

kZ(z) [ - O(Z) 3Zn (3.71)

C
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4. NUMERICAL RESULTS

The body shapes associated with the family of power-law shocks

can be obtained by setting 4j = 0 in the inner solutions, Equations (3. 51)

through (3.61). The results are:

Y + I n Yb (0 xn (4.1)Y + I Yb Y (0

Y + n + +1 + k 2Gl/Y -3•+22) Y Y l(0)xn + PP (0;n, x
3y + 2 + 1 Y 

) 4 2(4.2)

Yb 2 1(0 1
n =• b = [(Y:+ 1)'•(( + l)P 1(0))]Jx (4.3)

The effect of the entropy layer on the body shape can be seen more

clearly by defining a parameter as follows:

Y b " Y b 0( 
4 )o (4.4)

Ys "Yb
0

where Ybo is the body shape given by the first order outer solution. In

the range of values of n considered the results are:

+- n - I a----0 (4.5)

+ En Y y+ a k________ x
-_ + 1 "01 -\/ -2 - Y " o L

(4.6)

2/ 1
n = 1/2 a = [ + l)P2(0)] x, (4.7)

Thus, for n Z (y + 1)/(Zy + 1), the entropy layer does not effect the

£ body shape obtained from the first order outer solution. This agrees with

-19-



a result previously obtained by Sychev (Reference 3). For n -r (y + 1)/

(Zy + I), the effect of the entropy layer on the parameter a vanishes for

large distances downstream. As n4-/Z, the effect vanishes more slowly

in the downstream direction. For example, with y = 1. 4:

2n=•. a =0

4 -0. 50(n y CL - X (4.6)

1 -0. 143

The effect of nose bluntness on the inviscid flow field can be illus-

trated by considering a family of finite length bodies of the same thickness

ratio.

"• ~(yb)max
S= 1~ (4.9)

and different values of the parameter n. A family of such bodies with

T = 1/4 is shown in Figure 2. The flow field profiles at the base station

are shown in Figures 3 and 4 plotted versus the proportional distance

across the shock layer:

y* b (4.10)Y S" Yb

The existence of the entropy layer is most clearly illustrated by the

velocity and entropy function profiles of Figure 4. The more blunt bodies

or lower values of n produce thicker entropy layers with smaller gradients

at the body surface.

-20-



II

0

_ _ _ \0q. _ _0

- NI - _ _ _



CC

- 0 00 0CQ
.4 *h

NC. K-C1*
'Ic

C; C;



04

C__ Ci_ 14__ __o~

Ci~ 0 C

-23



5. CONCLUSIONS

The method of inner and outer expansions can be used to treat the

entropy layer near the body for blunt nose shpaes with power-law shocks,

ysB- X n, for I/2 n :1. The outer solutions near the shock wave are

identical to the blast wave solutions. The method essentially adds a con-

stant pressure entropy layer to the blast wave solution thus providing a

solution that is uniformly valid across the shock layer.

In this report the outer solutions were expanded about the body to

obtain the form of the inner expansions for lI/ --'n - 1. However, as

pointed out by Lees and Kubota (Reference 1), for n - 1/2, the outer

solution does not exist. It is not clear how the method of inner and outer

expansions can be applied to the case n - 1/2 or if such an analytic solu-

tion can be obtained.

The inner expansion for the space variable y(x, iF) consistent with

the first order outer solutions is a series which converges very slowly

as n--.l/Z from above. The case n = 1/2 is singular and requires only

one term in the expansion. This case was solved previously by Yakura

(Reference 4). Also, for (,y + 1)/(2-y + 1) ! n -- 1, only a single term is

required in the expansion and the inner solution is easily obtained. In

this range of n, the blast wave profiles are modified by the inner solu-

tion but the body shape is unchanged. This minimum value of n above

which the blast wave body is correct was previously presented by Sychev

(Reference 3). If two terms are retained in the expansion for y(x, 4i) the

inner solution can be extended to cover the range (-y + Z)/( 3 y + 2) n

-c(-y + 1)/(Zy + 1). However, for n only slightly greater than 1/2 the

method is of limited usefulness due to the slow convergence of the

expansion.
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